2020 DOE Vehicle Technologies Office Annual Merit Review # Integrated Motor and Drive for Traction Applications **Project ID: elt243** Dr. Bulent Sarlioglu (PI) Dr. Thomas Jahns (Co-PI) Wisconsin Electric Machines and Power Electronics Consortium (WEMPEC) University of Wisconsin-Madison June 1-4, 2020 ## **Overview** #### **Timeline** - Project start date: 4/01/2019 - Project end date: 3/31/2024 - Percent Complete: 20% #### **Budget** - Total project funding - DOE's share: \$ 1,500,000 - Funding for FY 2019: \$ 300,000 - Funding for FY 2020: \$ 300,000 #### **Barriers and Technical Targets** - Multi-physics integration of power electronics with machine to enhance performance metrics - High-temperature power electronics availability and cost - High-performance machine materials availability and cost - Advanced thermal management for machine & power electronics #### **Partners** - Oak Ridge National Laboratory (ORNL) - National Renewable Energy Laboratory (NREL) #### Relevance #### **Objective** Pursue an aggressive research program to merge high-torque-density traction machines and highefficiency inverters into state-of-the-art integrated motor drives (IMDs) packaged inside combined housings that will exceed existing traction drive performance metrics in several categories, as follows: | Electric Motor Requirements | | | | | | |-------------------------------|-------|--|--|--|--| | Metric | Value | | | | | | Cost (\$/kW) | ≤ 3.3 | | | | | | Power Density (kW/L) | ≥ 50 | | | | | | System Peak Power Rating (kW) | 100 | | | | | | Power Electronics Requirements | | | | | | |--------------------------------|-------|--|--|--|--| | Metric | Value | | | | | | Cost (\$/kW) | ≤ 2.7 | | | | | | Power Density (kW/L) | ≥ 100 | | | | | | System Peak Power Rating (kW) | 100 | | | | | #### Impact of research - Reduced overall mass and volume - Modular architecture - Co-packaged motor and drive - Shared thermal management system - → Future EVs with higher power rating and efficiency - Reduced manufacturing cost and higher fault tolerance/reliability - → Higher power density with lower EMI emissions and reduced cost - Simplification leading to reduced coast and enhanced reliability Our project aims to develop advanced IMD technology that will benefit Electric Vehicle manufacturers for achieving major performance improvements at lower cost ## Milestones for Budget Period 1 #### **April 2019 to March 2020** | Milestone Title and Description | Completion
Date | Description of Verification Method | Status | |--|--------------------|---|-----------| | Define machine and inverter configurations for trade-off study | 09/30/2019 | Review literature to identify initial list of machine and inverter topologies that deserver further investigation | Completed | | Machine and inverter topology review | 11/30/2019 | Analyze machine and inverter candidates to evaluate trade-offs. | Completed | | Down-select machine configurations | 01/12/2020 | Assign numerical rankings to machine and inverter topologies and down-select. | Completed | | Inverter performance analysis with simulation | 03/31/2020 | Use simulation tools to predict inverter performance | Completed | | Go/No Go Decision Title: Trade-off study for electric machine & inverter completed | 01/12/2020 | Use numerical rankings aligned with Table A performance targets to choose most promising candidates for further investigation | Completed | All planned tasks for Budget Period 1 successfully completed ## Milestones for Budget Periods 2 and 3 #### Milestones for Budget Period 2 (April 2020 to March 2021) | Milestone | Туре | Description | |--|-----------|--| | Motor electromagnetic design | Technical | Perform the design of the electric machine and specify the machine parameters | | PCB fabrication for benchtop prototype | Technical | PCB for benchtop prototype is designed and fabricated for testing | | Motor mechanical design | Technical | Verify the mechanical design of the motor with ORNL and NREL, deliver the final design for prototyping | | Performance analysis of benchtop prototype inverter | Technical | Evaluate the performance of the benchtop prototype inverter | | Go/No Go Decision:
Preliminary IMD Design Completed | Go/No Go | Drawings, schematics are ready for making the prototype motor and benchtop inverter. | #### Milestones for Budget Period 3 (April 2021 to March 2022) | Milestone | Туре | Description | |---|-----------|--| | Detailed prototype machine and inverter design | Technical | Complete the detailed design of the prototype machine and inverter in preparation for fabrication | | Fabricate prototype machine | Technical | Support fabrication of prototype machine | | Fabricate prototype inverter | Technical | Complete the fabrication of the prototype inverter | | Initial testing of prototype inverter and machine | Technical | Conduct inverter to verify their performance capabilities initial tests of prototype machine | | Go/No Go Decision: Complete the fabrication of the prototype machine & inverter | Go/No Go | Complete fabrication of prototype machine and inverter including performance verification testing as components. | ## **Approach** - Perform trade-off study for IMD electric motor - Investigate new motor topologies and material technologies - Analyze state-of-the-art preliminary motor designs by performing analysis and FEA - Compare promising preliminary designs - Down-select most promising electric motor for IMD configuration from trade-off study - Investigate promising IMD inverter topologies and conduct trade-off study - Investigate most appealing inverter topologies for IMD traction applications - Investigate *state-of-the-art technologies* in power switches, passive components, and cooling - Perform trade-off study comparing Voltage Source Inverter (VSI) and Current Source Inverter (CSI) topologies - Select most promising inverter topology and associated components for further development - Verify the performance of the selected motor drive configuration using analysis and simulation - Carry out preliminary IMD testbed preparation Achievements during Budget Period 1 (4/1/2019 to 3/31/2020) #### **Motor** - Investigated alternative motor types for traction application - Developed preliminary designs of several Surface Permanent Magnet (SPM) machines - Designed preliminary designs of spoke-type and V-shape Internal PM (IPM) machines - Performed tradeoff study to select the best IMD traction motor candidates (Pugh analysis) #### Inverter - Investigated alternative inverter topologies, including VSI vs. CSI comparisons - Analyzed applicability of available Wide Bandgap (WBG) devices and passive components - Performed trade-off study to select the best IMD inverter candidates (Pugh analysis) #### IMD (Combined Motor and Inverter) - Performed trade-off study to select the preferred IMD motor/inverter configuration (Pugh analysis) - Prepared preliminary IMD testbed for next phase of project Focus throughout work to date has been on optimizing the combined IMD system ### **Motor Tradeoff Study** ## SPM Machine with Concentrated Windings **Spoke-Type IPM Machine** with Distributed Windings V-shape IPM Machine with Concentrated Windings ## V-Shape IPM Machine with Distributed Windings - Focus has been on PM machines because of their superior power density - DOE guidelines have been followed to avoid magnets with heavy rare-earth materials and expensive lamination materials (e.g., CoFe) - Attention focused on maximizing power density and minimizing cost Several different types of permanent magnet machines have been investigated and compared for tradeoff study ### Example: Surface PM Traction Motor Design Details # SPM Machine with Concentrated Windings FEA-Calculated Von-Mises Stress: Permanent magnets are bonded to sleeve and frictionless with rotor core Flux Density Distribution in SPM Machine at Peak Torque FEA-Calculated Von-Mises Stress: Permanent magnets are frictionless with both sleeve and rotor core | Value | |----------------------------| | 10JNHF600
Si Steel | | N38 NdFeB
No Dysprosium | | 18/12 | | 3,200 | | 20,000 | | 55/100 | | 25.4 | | 96.5 | | | SPM machine is one of the promising machine candidates for IMD Studies have been carried out for IPM machines as well. ### Traction Motor Trade-off Results from Pugh Analysis | Criteria | Weight | SPM Machine | | Spoke IPM | | V-shape IPM | | |-------------------------------------|--------|-------------|----------|-----------|----------|-------------|----------| | Ontona | factor | Rating | Weighted | Rating | Weighted | Rating | Weighted | | Volume | 5 | 5 | 25 | 4 | 20 | 4 | 20 | | Cost | 5 | 3 | 15 | 3 | 15 | 4 | 20 | | Field weakening capability | 5 | 5 | 25 | 5 | 25 | 5 | 25 | | Efficiency | 5 | 5 | 25 | 4 | 20 | 4 | 20 | | High temperature capability | 3 | 3 | 9 | 4 | 12 | 4 | 12 | | Mass | 3 | 5 | 15 | 3 | 9 | 4 | 12 | | SC fault vulnerability | 2 | 3 | 6 | 4 | 8 | 4 | 8 | | Modularity (Concentrated windings) | 2 | 5 | 10 | 5 | 10 | 5 | 10 | | Noise | 4 | 5 | 20 | 5 | 20 | 5 | 20 | | Score | | | 150 | | 139 | | 147 | - The SPM machine has smaller rotor volume compared with other PM motor candidates with magnets inside rotor - Less magnet is needed to produce the same torque for V-shape IPM motor → lower cost - Optimal field weakening can be achieved by adopting fractional-slot concentrated windings - The rotor losses in the SPM machine are lower than for other IPM machines → Higher efficiency with improved cooling - The volume and mass of the SPM machine is smaller than for other IPM machines - Requirement specified in the SOPO - Requirement specified in the U.S. DRIVE roadmap - Other important requirements for electric machine SPM machine rated the most promising candidate for IMD system, with V-shape IPM machine also ranking high in study VSI vs. CSI Overview Comparison #### **Topology** #### DC Link Fragile and temperature-limited #### **Output Voltage** High dv/dt, creating motor insulation stress #### Common-Mode EMI High Common Mode (CM) EMI and bearing current risk Rugged and capable of high temperature Low-THD sinusoidal voltage and current waveforms Integral LC filter provides appealing EMI roll-off WBG-based Current-Source Inverter (CSI) overcomes many of the VSI limitations by significantly lowering output dv/dt stress, CM EMI emissions, bearing current risks, and temperature limitations **VSI** Tcbus # **Technical Accomplishments and Progress** Output Power Capability of VSI vs. CSI for CPSR E 200 and 150 100 50 CSI operates as a boost-type inverter which offers advantages over VSI for traction motor applications by extending the constant-power speed range 15 20 Torque 100 50 5 50 20 **FEA Torque** 10 15 ### Efficiency Comparison of VSI and CSI Power Converters 2-Level CSI with DC/DC Converter 2-Level VSI with Sine Filter 2-Level VSI with Sine Filter and DC/DC Converter | RPM | Power
(kW) | 2-level CSI
with dc/dc
converter | 2-level VSI
with sine
filter | 2-level VSI with sine filter and dc/dc converter | | | |--|---------------|--|------------------------------------|--|--|--| | 3,200 | 55 | 98.79 | 98.89 | 98.63 | | | | 3,200 | 100 | 98.07 | 98.38 | 97.99 | | | | 20,000 | 100 | 98.12 | 98.51 | 98.05 | | | | Operating condition: 55 kW output power, 50 kHz switching frequency, 650 Vdc | | | | | | | - Several power converter configurations were analyzed to compare their capabilities for meeting the DOE project performance metrics - Modeled the VSI and CSI topologies in PLECS using device manufacturer's SiC device models to predict the efficiency - Compared performance of power converters for predicted efficiency, EMI/EMC performance, and boost function of inverter output voltage for Constant Power Speed Ratio (CPSR) capability 2-level CSI with DC/DC converter and 2-level VSI with sine filter and dc/dc converter provide nearly the same field weakening and output voltage waveform quality, providing a fair comparison 2-level VSI with sine filter and dc/dc converter has lower predicted efficiency than the other two #### Pugh Analysis of Inverter Candidates | Criteria | | | CSI with 2-level sine file | | VSI with | 2-level VSI with sine filter and dc/dc converter | | |-----------------------------|---|--------|----------------------------|--------|----------|--|----------| | | | Rating | Weighted | Rating | Weighted | Rating | Weighted | | Volume | 5 | 5 | 25 | 5 | 25 | 4 | 20 | | Cost | 5 | 4 | 20 | 5 | 25 | 4 | 20 | | Field weakening capability | 5 | 5 | 25 | 3 | 15 | 5 | 25 | | WBG capability | 5 | 4 | 20 | 4 | 20 | 4 | 20 | | Efficiency | 5 | 5 | 25 | 5 | 25 | 4 | 20 | | High temperature capability | 3 | 5 | 15 | 4 | 12 | 4 | 12 | | Score | | | 130 | | 122 | | 117 | - Requirements specified in the SOPO - Requirements specified in the U.S. DRIVE roadmap - Volume of VSI's sine filter penalizes its power density performance metric - 2-level VSI with sine filter has fewest components → lowest cost - The boost function of CSI and 2-level VSI with dc/dc converter both yield high CPSR capability - Based on simulation estimates, 2-level CSI with dc/dc converter and 2-level VSI with sine filter have the *highest efficiency* predictions - Replacement of the VSI's dc-link capacitor with an *inductor* in the CSI eliminates one of the most thermally-limiting power circuit components 2-level CSI with a dc/dc converter evaluated to be the strongest candidate topology for the IMD system based on trade study comparison # WEMPEC ## **Technical Accomplishments and Progress** **Preliminary IMD Configuration** **IMD Exploded View** #### Preliminary Power Converter Layout #### **Notes:** - Cooling not shown - Housing and structure for illustration purposes only - Detailed IMD design will be performed during next Budget Period Axial-mounted power converter represents one promising topology for IMD configuration ## Pugh Analysis of Integrated Motor Drive (Motor + Inverter) | Weight dc/ | | dc/dc d | l-level CSI with
lc/dc converter
PM machine | | 2-level VSI with sine filter + PM machine | | 2-level VSI with sine filter and dc/dc converter + PM machine | | |-----------------------------|---|---------|---|--------|---|--------|---|--| | | | Rating | Weighted | Rating | Weighted | Rating | Weighted | | | High temperature capability | 3 | 5 | 15 | 4 | 12 | 4 | 12 | | | EMI | 4 | 3 | 12 | 3 | 12 | 3 | 12 | | | Parts count | 4 | 4 | 16 | 5 | 20 | 4 | 16 | | | Weight | 3 | 5 | 15 | 4 | 12 | 3 | 9 | | | Fault tolerance | 2 | 4 | 8 | 2 | 4 | 2 | 4 | | | Modularity | 2 | 1 | 2 | 1 | 2 | 1 | 2 | | | Score | | | 68 | | 62 | | 56 | | - Requirements specified in the U.S. DRIVE roadmap - Other important requirements for IMD - Since our project focuses on IMD concept, an additional trade study was carried out to provide a composite score for IMD including both motor and inverter trade-off - CSI holds advantages over VSI in IMD applications because of its better suitability for *high-temperature* operation in proximity to machine end windings - IMD using 2-level VSI with sine filter has fewest components but it suffers in other metric categories - IMD using the 2-level CSI with a dc/dc converter has the lowest number of passive components which helps to minimize power converter volume - CSI is much better at surviving short-circuit faults with PM machines than VSI due to absence of freewheeling diodes in CSI IMD configuration using 2-level CSI with dc/dc converter with PM machine has been selected as the preferred candidate for development during next phase of this project **Preliminary IMD Testbed Preparation** #### Our IMD testbed will include. - High performance oscilloscope and probes - Power analyzer - DC power supply - 4-Quadrant dynamometer Components and equipment for high-performance IMD testbed are being procured # Responses to Previous Year Reviewer's Comments This is the first year that the project has been reviewed. # Collaboration and Coordination with Other Institutions #### Oak Ridge National Laboratory (ORNL) - UW-Madison participates in biweekly telecon meetings with ORNL and other participating universities to discuss the project progress and design requirements - Prof. Sarlioglu and Jahns and their students informally met with Dr. Ozpineci, Dr. Guijia Su, and Dr. Jason Pries of ORNL at the IEEE ECCE conference in Baltimore last September #### National Renewable Energy Laboratory (NREL) - Prof. Jahns visited NREL this year and initialized discussion about project with Dr. Sreekant Narumanchi who leads the thermal design group. - UW-Madison and NREL had follow-up telecons to discuss the project and collaboration opportunities Partnership collaboration with National Labs will expand during 2nd project year ## Remaining Challenges and Barriers - Multi-physics integration of IMD to achieve optimal use of volume and cost - Advanced thermal management for IMD to limit maximum temperatures of magnets and power converter - Availability of high-temperature power electronics and high-performance machine materials at low cost IMD concept requires aggressive multi-physics design to optimize motor drive system for volumetric power density and cost ## **Proposed Future Research** #### **Budget Period 2: Preliminary IMD Design** #### We plan to carry out following tasks: #### **Task 2.1 – Electric Machine Design** - Design electric machine using analysis, simulations, and FEA software to evaluate and optimize performance metrics - Collaborate with ORNL and NREL to address multi-physics technical issues including mechanical, structural, and thermal design #### **Task 2.2 – Development of Benchtop Prototype Inverter** - Evaluate all key performance metrics including power density, cost efficiency, and EMI/EMC characteristics - Design gate drives, passive components, and controller unit - · Fabricate and test the benchtop inverter to retire technical risks 150 150 kHz CM EMI (dB 2nd year will provide critical opportunity to convert promising IMD concept into machine and inverter designs for rigorous multi-physics evaluation # **Summary** - Integration of power electronics inside machine represents one of the most promising approaches for making major progress to reach challenging DOE performance metrics - Demands systems-oriented, multi-physics-based approach to achieve success - Opens promising avenues to boost power density and lower cost, with valuable additional benefits in areas such as reliability/fault tolerance - First year of project has succeeded in identifying the most promising machine and power converter technologies for future IMDs to meet DOE metrics - > Thorough trade-off studies have played a key role in identifying best candidates - PM machines combined with CSI power electronics has emerged as the most promising approach for designing IMDs to achieve performance metrics - 2nd year will focus on converting IMD concept into a preliminary design for evaluation - Multi-physics analysis will be critical for optimizing design for highest performance - Retire key technical risks using experimental benchtop prototype inverter Promising start for developing advanced IMD to meet DOE objectives # **Technical Backup Slides** Interior PM Machine with Distributed Winding Traction **Motor Design Details** ## IPM machine with distributed winding **Von-Mises stress** Flux density distribution IPM machine at peak condition **Displacement** | Parameter | Value | |----------------------------|----------------------------| | Stator/rotor material | 10JNHF600 | | Magnet material | N38 NdFeB
No dysprosium | | Stator slots / Rotor poles | 72/12 | | Rotor corner speed [rpm] | 3,200 | | Rotor max speed [rpm] | 20,000 | | Rated Power [kW] | 55 | | Peak Power [kW] | 100 | | Peak Power density [kW/l] | 22.9 | | Efficiency @ 55 kW | 96.5 | | | | IPM machine with distributed winding has been investigated to meet the requirements Interior PM Machine with Concentrated Winding Traction **Motor Design Details** # IPM machine with concentrated winding **Von-Mises stress** Flux density distribution IPM machine at peak condition **Displacement** | Parameter | Value | |----------------------------|----------------------------| | Stator/rotor material | 10JNHF600 | | Magnet material | N38 NdFeB
No dysprosium | | Stator slots / Rotor poles | 18/12 | | Rotor corner speed [rpm] | 3,200 | | Rotor max speed [rpm] | 20,000 | | Rated Power [kW] | 55 | | Peak Power [kW] | 100 | | Peak Power density [kW/l] | 21.5 | | Efficiency @ 55 kW | 95.5 | | | | IPM machine with concentrated winding has been investigated to meet the requirements ## Investigation of New Motor Designs and Materials - Investigated new motor technologies including following - High-energy magnet materials with high temperature capability (no heavy rare earth) - Insulation materials with high thermal conductivity, low weight and volume, and corona resistance - Lightweight and high-strength composite materials - Advanced electromagnetic design incorporating various materials and structural advances - Advanced thermal management concepts B-H curve of N38 NdFeB magnet | TABLE II Properties for Insulation Material | | | | | | |---|-------|--|--|--|--| | Property | Value | | | | | | Thermal conductivity [W/mK] | 1.9 | | | | | | Dielectric strength [kV/mm] | 18.5 | | | | | | Mixed specific gravity @25°C | 2.73 | | | | | CoolTherm EP-2000 from Lord 3D-DWHX concept in a stator TORAYTORAYCA Carbon fiber Identified the best materials for our project from our survey for high energy magnet, insulation materials, composite materials, electromagnetic design, and thermal management **Current Source Inverter with WBG devices** #### Enablers - WBG (SiC and GaN) - High efficiency and high frequency inductor DOE Requirements CS Output #### Controls High performance DSP High power density High efficiency Good EMI/EMC performance Output voltage almost sinusoidal Low PWM harmonics Good field weakening capability Output voltage boost function High temperature capability No DC Link capacitor - Current source inverter (CSI) is a dual topology of traditional VSI - The dc-link capacitor in the VSI is replaced by the dc-link inductor, and three small capacitors are added at CSI's output terminals - The dc-link inductor of CSI can be dramatically reduced in mass and volume because of high switching frequency values of WBG - The <u>high-frequency WBG</u> switches is the enabler for CSI to come back - The CSI has less EMI issue than VSI because of filtering effect of output capacitors for the output voltage. Survey on WBG devices, passive components, and cooling methods - Surveyed and analyzed WGB (SiC and GaN) power semiconductor devices - Investigated FET + Diode vs FET + FET configuration for RVB switch for CSI | Company | Part No. | Vds (V) | ld @ 25C (A) | Rds @ 25°C (Ω) | Packaging | |----------------|---------------------|---------|--------------|----------------|-------------| | Transphorm | TP65H050BS* | 650 | 34 | 0.05 | TO-263 | | Transphorm | TP90H050WS* | 900 | 34 | 0.050 | TO-247 | | GaN Systems | GS-065-150-1-D | 650 | 150 | 0.01 | Die | | OnSemi | NVHL080N120SC1OS-ND | 1200 | 44 | 0.11 | TO-247 | | Littelfuse Inc | LSIC1MO120E0120 | 1200 | 27 | 0.150 | TO-247 | | CREE | C3M0016120K | 1200 | 115 | 0.016 | TO-247 | | CREE | C2M1000170D | 1700 | 4.9 | 1.1 | TO-247 | | CREE | CAB450M12XM3 | 1200 | 450 | NA | Half-Bridge | | GeneSiC | GA50JT12-247 | 1200 | 100 | 0.025 | TO-247 | | GeneSiC | GA08JT17-247 | 1700 | 8 | 0.25 | TO-247 | | ROHM | SCT3017ALHRC11 | 650 | 118 | 0.0221 | TO-247 | | ROHM | SCT3022KLHRC11 | 1200 | 95 | 0.0286 | TO-247 | Investigated various cooling methods used in EVs including power device cooling - Characterize capacitor volume vs. capacitance - Compared ceramic vs. film capacitors - Looked at various inductor materials and carried out preliminary inductor designs We successfully reviewed and analyzed recent technical developments that will enable high power density traction drive system